
United States
Naval Postgraduate School

* THE SIS
A DICTIONARY STRUCTURE FOR USE WITH AN

ENGLISH LANGUAGE PREPROCESSOR TO A

COMPUTERIZED INFORMATION RETRIEVAL SYSTEM

by

Charles Thomas Schmidt

June 1970

ThiA documnt haa been apptoved So'!. pubtic uL-
teae and Aate; i4 ditibation i4 witited.

Reproduced by the
CLEARINGHOUSE

for Federal Scientific & Technical
Information Springfield Va. 22151

OOuO 4DO50 94

'Iw

A Dictionary Structure for Use with an Engl!.sh Language

Preprocessor to a Computerized Information Retrieval.System

by

Charles Thomas Schmidt
Lieutenant Comnder, United States Navy

B.A., University of Michigan, 1962

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the
NAVAL POSTGRADUATE SCHOOL

Jume 1970

Author: (I~'yc-j~ .. ?.kvicQ

Approved by: I.caThs Adio
U3 Thesis Advisor

e rman, Committee for Computer Science

Academic Dean

ABSTRACT

This paper describes the formation of a dictionary list structure

which can be used by an English language translator to enable natural

language man-machine conversation directed towards the retrieval of

information from a data bank. The hierarchical structure of the let-

ters in a word and the placement of word attributes in this structure

is discussed.

A computer program, which ac..epts as input an English language

sentence and processes this sentence in conjunction with the dictionary

list structure to obtain the attributes of the individual words, is

described. The incorporation of this dictionary structure into a

complete natural language information retrieval system is also

discussed.

2

TABLE OF CONTENTS

I. INTRODUCTION 9

II. SYSTEM DESIGN 13

A. LIB-SER PROGRAM ------ - 13

1. List Structure in the Program.--- 14

a. ATOMLIST List 16

b'. Connective Lists, 18

2. File Description 19

a. Description of the Dictionary File 19

b. Codes File 22

3. Initialization 22

a. The Dictionary Tree Structure 23

b. The Table Array 25

4. Processing of a Request 25

a. Entry of a Request 25

b. Determination of the Attributes 28

B. TABLE PROGRAM 30

C. HASEX SUBROUTINE .. 31

1. Determination of the Hash Code 32

2. Collision Handling . - 33

III. AN EXAMPLE 34

IV. CONCLUDING REMARKS 36

COMPUM PROGRAMS 37

LIST OF REFERENCES 52

INITIAL DISTRIBUTION LIST 53

FORM D 1473 55

3 Preceding page blank

LIST OF FIGURES

FIGURE PAGE

1. SYSTEM BLOCK DIAGRAM 11

2. GRAPHIC STRUCTURE OF LISP 1.5 LISTS 15

3. GRAPHIC STRUCTURE OF THE LISTS USED 16

4. STRUCTURE OF AN ATOMCELL 17

5. SAMPLE ATOMLIST 18

6. STRUCTURE OF A CONCELL 18

7. A CONNECTED LIST 19

8. SAMPLE DICTIONARY RECORD 22

9. RECURSIVE STRUCTURE OF CONNECTED LISTS 24

10. ATTACHMENT OF MULTIPLE DEFINITIONS 26

n. SAMPLE USER'S REQUEST 28

12. TEMPORARY AND FINAL ATTRIBUTE LISTS 29

13. USER'S REQUEST WITH ATTRIBUTES ATTACHED 30

14. EFFECTS OF THE DELETE ROUTINE 34

15. SAMPLE PROGRAM 35

5 Preceding page blank

LIST OF DEFINITIONS

1. Record (Logical Record) - A collection of related data elements

treated as a unit. (E.g., the topic name and its numeric code word).

2. File - A collection of related records treated as a unit.

3. Information Retrieval System - A process developed to recover
specific information from a data bank.

4. Key-Searches - Searches conducted to retrieve information in
accordance with a specific data input parameter (or set of parameters)
called a key.

5. Pointer - A numeric value used to specify an address in core

6. Null Pointer - A special pointer value that cannot relate to any
address in storage (represented by NIL or"A).

7. Node - One or more consecutive bytes of core storage divided into

parts called fields. (synonym -- cell)

8. Tree - A finite set of one or more nodes such that there is one
specially designated node called the root of the tree and the remaining
nodes are partitioned into disjoint sets of trees which are called
subtrees of the original tree.

9. Binary Tree - A tree structure where each node has at most two
subtrees. When there is only one subtree present, a distinction is
made between whether it is a left subtree or a right subtree.

10. Hash Coding - A method of effecting random storage where a tranm'-
formation is performed on a key (in this case the topic name) to
produce an address in the table which can be used to locate a position
for placing the key and Acs associated item.

Preceding page blank

A

I. INTRODUCTION

The Technical Reports Section at the Naval Postgraduate School

Library currently offers its users access to those reports in its

holdings by either of two methods. First, the user can search through

the card index to obtain the report number of the item desired, or,

second, he can conduct a computerized library search to obtain a bib-

liography of those reports in the holdings which pertain to the sub-

ject area of interest.

This library search is conducted by entering a numeric code word

into an information retrieval system which will then use this code

word as a key to search for and retrieve a bibliographical listing

of those reports which pertain to the entered code word. Any number

of code words can be combined, and the items on the bibliography re-'

trieved for the user will have all of the code words within their list

of keys. At present the Technical Reports Section has about 100,000

bibliographical items in its file, and these items can be accessed

by over :0,000 different code words.

Although a library search is faster and easier for the user, es-

pecially when only a general topic area is desired, it does have a

nimber of shortcomings. First, there is a nominal delay between the

request for the search and the obtaining of the bibliography resulting

from thatsearch. Second, the user does not know at the time of his

request whether or not *Ls topic area is too broad or too narrow to

obtain a reasonable bibliography. Third, the user presently has to

personally search through a book of topic areas to obtain the numberic

code words required Zor the information retrieval system.

Preceding page blank

Aihis report ie the result of a project to develop a flexible and

accer~ible information system for the specific objective of retrieving

a bibliography of the reports held by the Technical Reports Section

of the Naval Postgraduate School Library. The proposed system would

be implemented on the school's IBM 360/67 computer and would utilize

the time-sharing capability of that system.

The system as conceived would be similar to the REAL ENGLISH system

at the University of Pennsylvania [1]. It would consist of an

English language translation capability which would be used to pre-

process the user's English language request, which has been entered

at the time-sharing terminal, to determine the specific item(s) des 'red.

Then the numeric code associated with each item would be retrieved from

a table and entered into the existing information retrieval system.

The number.of items in the bibliographical file which met the criterion

of the code word(s) would be printed out at the terminal, and the user

could then specify whether or not there was a sufficient number of

bibliographical items for his use. If the number of items were not

sufficient or overly abundant, the user could re-initiate his request

in either a broader topic area or a more restricted area to obtain

the desired number of items in the bibliography. If the number of

bibliographical items was sufficient, the user could specify that the

bibliography was tu be printed out at the terminal or at the offline

printer at the computer installation. A generalized block diagram

of the proposed system is shown in figure 1, page 11.

The remainder of this report has been written in two parts. The

first part describes the formation of a dictionary structure required

for the English language tr-slation, the processing of the user's

10

ENGLISH LAINGUAGE REQUEST IS RE-INITIATE
SYNACICALYAND SEMANTICALLY IH EUS

REMAINING IN THE REQUEST?

NUMERIC CODE WORD(S) ASSOCIATED
WITH EACH ITEM ARE OBTAINED

FROM A TABLE

HASA UMEICCODE BEEN No
\FOUNDFOR EACH ITEM?

NFI 1. SysTEA BlokSDTErM

HAV TE ESIEDNUBE

request to obtain from the dIcriona-y the attributes of the Individual

words, and the retrieval of the numeri4 codes from the table of code

words. The second part consists of iliustrative examples of the

system.

The syntactic and semantic interpretation of the attributes of

the request and the actual implementation with the existing informa-

tion retrieval system are left for iurther study. Some work in the

area of syntactic and semantic interpretation has been done by Cautin

11,21 ani Kellog [5,6] whicli might be of value for anyone who desires

to conduct further work on this system.

I 1

II

12

II. SYSTEM DESIGN

At this stage in the development of the system, there are three

main computer programs or subroutines. The primary program, LIB-SER,

which Is mainly concerned with performing operations on lists, was

written in PLi [7,8,9] to take advantage of the list processing and

recursive capabilities of that language. Also, PL/I was chosen

instead of a list processing language, such as LISP 1.5, because of

the availability of PL/I at the Naval Postgraduate School computer

installation.

The TABLE program, which is also in PL/I, was written exclusively

for use as a calling program for the construction and maintenance of

the numeric codes table. PL/I was chosen for this routine mainly

because of its character manipulation capabilities.

The final program, HASHX, is a subroutine written in IBM 360/67

Assembly language [10,11] and is called into operation by both the

LIB-SER and TABLE programs. Assembly language was chosen since it

allows a closer control over the representation and location of data

while in computer core storage. This close control is necessary

since HASHX is used to move the core character representations of the

topic names and their numeric codes from one position to another in

core storage.

A. LIB-SER PROGRAM

The LIB-SER program is the main program utilized by the proposed

library search system. It is utilized to build lists, add items to

lists, delete items from lists, and search for items on the lists

13

maintained during the operation of the proposed system. The lists

of prime importance are ATOMLIST, the dictionary list (L), the user's

request list (L2), and the multiple definitions list (L3).

1. List Structure in the Program

A list structure was used in this program since a hierarchical

structure was desired for the dictionary list. This hierarchical

structure is used to simplify the search through the dictionary for

the attributes of the words in the user's request. The inputs to the

program, the dictionary file and the user's request, are built into

a system of connected lists where these lists take on a form similar

to the program and data stricture utilized in the list processing

language LISP 1.5 [12].

In LISP 1.5, program and data are represented in the form of

symbolic expressions or S-expressions where these S-expressions are

of indefinite length and have a branching binary tree structure which

allows the identification and isolation of sub-expressions or sub-

trees within the basic structure. The S-expressions are graphically

represented in this binary tree structure, as shown in figure 2 on

page 15, as a sequency of nodes or cells, each of which has two fiel a.

When using the dotted pair notation in LISP 1.5, both of the fields can

be used to contain a pointer to another node or cell or they can be

used to contain a character string. In an alternative notation, list

notation, the left field is the only field which can be used to contain

a character string or pointer. The right field contains a pointer

to the next node in the tree or a special pointer, NIL, which is used

as a terminator of the list.

14

AI !NI
B BI

JA' (B-C)) (A(B C))

(a) (b)

dotted pair notation list notation

FIGURE 2. Graphical Structure of LISP 1.5 Liss

The list structure used in this program is a modified version

of the list notation used in LISP 1.5. This modification was required

by the use of PL/I as the programming language and the requirement of

this language that the contents of the fields in a cell be explicitly

declared. Thus, no one field can be used to contain both a pointer

and a character string during a program execution. This required that

the character strings besplaced in a type of cell, called ATOMCELL in

this program, defined separately from the connective cells, called

CONCELL, used to represent the tree structure. It also required, as

shown in figure 3 on page 16, that each of the character strings which

is placed in an ATOMCELL to have associated with it two CONCELLS.

The upper CONCELL is used to connect the character string to other

character strings at the same level in the subtree. The lower CONCELL

is used to contain a pointer to the character string contained in the

ATOMCELL and serve as an attachment point for any subtrees of that

character string.

15

Since there are two CONCELLS associated with each character

string, a method of determining whether or not the left field of the

CONCELL pointed to an ATOMCELL or to another CONCELL in the list was

required. This was accomplished by the addition of a third field to

the CONCELL type of cell. A fourth field was added to indicate the

depth of the occurrence of the cell in the list structure and is

utilized during the construction of the trees.

(A<BC))

FIGURE 3. Graphical Structure of the Lists Used.
1

a. ATOMLIST List

The ATOMLIST list is used to store the alphabetic, numeric,

and special characters which are required by the program to be retained

in their symbolic form during the operation of the program. It con-

sists of a series of connected cells called ATOMCELLS, shown in figure

4 on page 17, which have three fields. Each new cell added to the list

is connected to the first cell on the list.

All of the circled character strings are included in the ATOMLIST
list and only conceptually displayed here. The -A or X used in the
CDRF field is used to indicate the NULL pointer.

16

The three fields are the SIZE field, which contains the

number of characters of the item represented in the cell, the PNAME

field, which contains the character representation of the item, and

the NEXT field, which contains a pointer to the next ATOMCELL on the

list.

SIZE

FIGURE 4. Structure of an ATOMCELL

Each of these ATOMCELL8 is placed on this list as the

characters they contain are encountered during the operation of the

program, with the majority of them being attached to the list during

the initialization phase of the dictionary. Each item is included

in this list only once since a search of the list (procedure LOOKUP)

is conducted every time an item is encountered to determine if an

ATOMCELL has or has not already been included in the list which con-

tains the character(s) of the item. No ATOMCELLs are deleted from

this list during the operation of the program.

All referrals to the character representation of any item

on the ATOMLIST is by the pointer to the eatire ATOMCELL. This pointer

will be the same as that contained in the NEXT field of the ATOMCELL

imediately prior to the ATOMCELL containing the desired characters,

if one exists, or else it will be the pointer ATONLIST since the charac-

ters would then have to be contained in the first ATOMCELL on the list.

A diagram of the ATONLIST is shown below in figure 5.

1V

FIGURE 5. Diagram of the ATOMLIST

b. Connective Lists

All of the remaining lists built and used by the program

are used to connect the character representations in the ATOMLIST

in various fashions. These lists consist of a series of CONCELLS

which have four fields, an ATOMB field, a LEVEL field, and two pointer

fields, CARP and CDRF. The structure of the CONCELL is shown in figure 6.

SIGURE 6. Structure of a CONCELL

The ATOMB field is used to indicate the purpose of the

CONCELL. It is a two bit field which can contain one of three binary

values, 00, 01, or 11. The 00 value indicates that the CONCELL is

being used as a connective cell where both the CARF and the CDRF fields

contain pointers to other CONCELLs, with the exception that the CDRF

field may contain a null pointer. All items in the same subtree at

any particular level will be connected by the CDRP field of a CONCELL

with a 00 ATOME field.

The 01 value indicates that the CARF field contains a

pointer to an ATOMCELL. The CDRF field may contain a pointer to an-

other CONCELL with a 00 ATOMB field which is at the next level down

in the tree, or else contain a null pointer. The 11 value, which can

18

only be placed in the ATOMB field dring the initialization phase of

the dictionary list, indicates that the CARF field contains a pointer

to an ATOMCELL which contains the name of a multiple definition or an

attribute name. The CDRF field always contains a null pointer.

A sample connective list is shown below in figure 7.

100 10 1 1 T-, 0 1 ,-A

10 10 1o r1 10 1 I-A

FIGURE 7. A Connected List

The LEVEL field contains a numeric indication as to the

level in the tree structure of the particular cell. For CONCELLs that

are contained in the multiple definitions list, the value contained

in the LEVEL field is not changed when that definition is included

at other places in the structure of the dictionary.

The use of the multiple definitions will be explained

later during the discussion of the initialization of the dictionary.

2. File Descriptions

Two files are used by the program during the initialization
I

phase to enter data into the program, the Dictionary file and the Codes

file. Both files are read-only files when used by the LIB-SER program.

a. Description of the Dictionary File

19

(1) Convention and Special Characters. With the excep-

tion of the attribute names and the names of the multiple definitions

sequences, all items in the dictionary are single characters. Spaces

or blanks are used only to improve the readability or to separate items

in the dictionary. The attribute names and the multiple definition

names must be at least two characters in length and the multiple de-

finition names start with the letter M.

There are eight characters used in this file which

have special significance during the operation of the program. These

characters are the right and left parentheses, the greater-than symbol

(>), the less-than symbol (<), the dollar sign ($), the minus sign

(-), the asterisk (*), and the slash(/).

The six characters, right and left parentheses,

greater-than symbol, less-than symbol, the dollar sign, and the slash,

are used during the building of the list structure to determine the

proper connections which have to be made. The left parenthesis is

used to indicate the beginning of the dictionary file. The right paren-

thesis is used to Indicate the end of the dictionary file. The dollar

sign is used to terminate the processing of the current input. The

less-than symbol is used to indicate that the items that follow are

to be attached to the preceding character at the next lower level in

the tree structure. The greater-than symbol is used to indicate that

items at the current level in the subtree have been processed and that

the following items are not to be attached at that level but at the

next higher in the tree structure. The slash is used to indicate that

the next item is the name of a multiple definition and that the pre-

%viously formed subtree, which is attached to that multiple definition

20

nt.ne, is to be inserted at this point in the current subtree.

The two characters, the minus sign and the asterisk,

are used during the attribute determination phase to indicate special

conditions or operations. The minus sign is used to indicate that the

following attribute is not to be retained for the word thus formed.

This attribute may or may not have been retrieved for the word under

consideration. The asterisk is used to indicate that a complete word

has been placed in the tree structure to that point in the tree. It

is also used as the attachment point for any remaining attributes of

the word that it terminates.

(2) File Description. The Dictionary File consists of

a sequence of characters contained in a series of sixty-character

records. The file begins with the left parenthesis and ends with a

right parenthesis and a dollar sign in the last record. The first

character in the sequence after the left parenthesis is the symbol

one (1) which is used as an attachment point for all of the multiple

definitions. The remaining characters are placed into the file such

that the tree structure which is built from this file will contain

all of the words entered into the dictionary of the program.

At the zero level in the dictionary tree, the twenty-

six letters of the Latin alphabet are attached to the preceding

character in descending order according to their probability of occurrance

in the English language (131. These letters are used as the first

character of all words in the dictionary. Each of the remaining letters

in a word is preceded by the less-than symbol to indicate that they are

to be attached to the previous letter in the word at the next lower

level in the subtree.

21

Were there are attributes that are common to a number

of words with similar beginnings, those attributes can be included in

the sequence immediately prior to the beginning of the dissimilarity.

Wherever a complete word has been represented, an asterisk is included

in the sequence following the last letter of the word. When a word

being described has a common ending, such as the plural endings ES

and S, the multiple definition name for that ending is placed in the

sequence immediately following the slash symbol, and this multiple

definition name is used to complete the word. Figure 8 illustrates

the use of the multiple definition name in the sequence.

S<O*(E<* ADVBP)>>) E<N<D <VERBP * /MINC>)>>

FIGURE 8. Sample Dictionary Record

b. Codes File.

The codes file consists of a series of sixty-character

records of which only the first twenty characters are utilized. Each

record consists of the topic name beginning in the first character posi-

tion and followed by the five number numeric code word in the last

five character positions with blanks in between. The records are ar-

ranged in the file according to the hash coded index of each item that

is determined during the operation of the'TABLE program and its call

to the subroutine RASHX

3. Initialization.

The program has an initialization phase in which the dictionary

file is read and structured into the tree and subtrees required for

later use in the deitermination of the attributes of a user's request.

After the dictonary has been structured, the table file is read into

22

an array for use during the search for the n:=zic code words required

for the information retrieval system.

a. The Dictionary Tree Structure.

The dictionary tree structure is a connective list which

has pointers in the CARF field of the appropriate CONCELL to point

to the required symbolic data in the ATOMLIST. It is formed by first

constructing the multiple definitions subtree and then constructing

the remaining subtrees, all of which start with the letters of the

alphabet and some punctuation characters. All of the subtrees are

constructed independently by the recursiveness of the structuring

procedure (S_EXTR) until the last subtree has been structured at which

time the subtrees are connected to form the dictionary tree. The

recursive construction of the tree is illustrated in figure 9 on page 24.

Although the multiple definitions subtree is constructed

in the same manner as all of the other subtrees in the dictionary,

there is a special pointer (L3) which is assigned to point to this

subtree during the initialization. This assignment occurs immediately

upon completion of the structuring of the subtree and before the next

subtree is started. This pointer is required during the structuring

of the remaining subtrees as a beginning pointer for the procedure

(LOOKLIST) when a search for a multiple definition used in the other

subtrees is required. The multiple definitions subtree cannot be re-

cursively defined (i.e., a m"tiple definition which uses another mul-

tiple definition as one of its endings) since the special pointer is

not assigned until the completion of the entire structuring of the

subtree.

During the construction of the remaining subtrees, the

multiple definitions are used whenever a slash is encountered during

23

Q1 2n
01

(a) Before Returning 60
From Recursion

Q3

(S 6 001

01

(b) Partial Return0002

(c) omplte Rtur

FIGURE ~~ L -. Reusv Stucur of Conete Lists

Q,24

the scanning of the input symbols. When this occurs, the procedure

LOOKLIST is invoked to determine the pointer to the subtree required

at this point for the completion of the word being entered into the

dictionary. The program allows more than one multiple definition to

be used as an ending of a word with the stipulations that none of the

multiple definition subtrees can begin with the same letter nor can

the multiple definitions subtrees begin with the same letter as is

already included in the subtree of the word at that level. The use

of the multiple definition is illustrated in figure 10 on pages 26

and 27.

b. The Table Array

The table file is copied directly into the array area,

CODE. No processing occurs with the items in the file during the

initialization phase of the program. Currently, there is a logical

switch (true or false) which has been turned off (false) to prevent

the table file from being read into the CODE array. When further

implementation of the proposed library search system has been accom-

plished, this switch can be turned on to allow the initialization of

the table array for use in the table search procedure.

4. Processing of a Request

After the initialization phase has been completed, the computer

will loop through the remaining parts of the program until the string

STOP$ is entered at the terminal by the operator.

a. Entry of a Request

The user is requested by the program to enter his name

and student box number (or other appropriate school mail box) to be

used for identification purposes. The user is then asked to enter

25

(a) The Multiple Definitions

FIGUJRE 10. Attachment of Multiple Definitions

26

-I *'1

(b) Word with Multiple Definitions

FIGURE 10. Attachment of Multiple Definitions

27

his English language request surrounded by right and left parentheses

and ending with a dollar sign. If the request is too long to be en-

tered at one time, the right parenthesis and dollar sign can be left

off until the entire request has been entered.

The request entered will be built into a tree (L2) in the

same manner as the dictionary tree where all of the words and punctua-

tion are entered as single item. Figure 11 is an example of a typical

user's request tree.

FIGURE 11. Sample User's Request

This tree structure will then be passed to the attribute determination

routine for processing.

b. Determination of the Attributes

In the procedure ATTRB, each word in the user's request

is separated into its constitutent letters and these letters are passed

one at a time to the LWOKLIST procedure. The ATTRB procedure will also

pass to the LOOKLIST procedure the subtree, or tree if the letter is

the first letter of the word, on which the LOOKLIST procedure is to

search for the letter.

In the LOOKLIST procedure, each letter is searched for only

in the highest level of the subtree passed to it. Any attributes which

are encountered before the letter is found will be attached-to a tem-

porary pointer (L3) for later combination with the final attributes.

28

When the letter has been found, the pointer contained in the CDRF field

of the CONCELL which points to the ATOMCELL containing the letter is

returned to the ATTRB procedure. This pointer will be used by the

ATTRB procedure as the pointer to the subtree used during the next

call to LOOKLIST.

This searching will continue until all of the letters of

the word have been found. After the last letter has been processed,

the ATTRB procedure will pass to the LOOKLIST procedure an asterisk

and the latest subtree. The pointer (Q) returned from this call will

point to the list of final attributes of the word, if any.

At this point, both the temporary attribute list and the

final attribute list will be passed to the DELETE procedure for the

deletion of avy attributes in the temporary list which are indicated

as not applying to the word by the prefixed minus sign on the attribute.

The before and after structure of the temporary and final attribute

lists are illustrated in figure 12.

M3 q

00 Q0 L3-A 00 Io -

1; A) 11 ll) t

.(a) (b)
Before Deletion After Deletion

FIGURE 12. Temporary and Final Attribute Lists

The t.emporary list and the final list will be connected after this

deletion has taken place, and the resulting list will be attached to

the word on the user's request list (L2) as shown in figure 13.

29

YOU HA E ER PRN3SG

FIGURE 13. User's Request with Attributes Attached

As the processing of each word has been accomplished, a

message is displayed at the terminal to the effect that the attributes

have been found. If during the search for the letter of a word by the

LOOKLIST procedure, that letter is not found, a null pointer is returned

to the ATTRB procedure. This null pointer will result in the ATTRB

procedure displaying a message at the terminal that the attributes of

the word have not been found, and then the procedure will begin to

process the next word in the request.

After all of the words have been processed, the computer

prints out the user's list which now includes the attributes of the

individual words. The computer then branches back to the beginning

and requests a new user to enter his name and box number.

B. TABLE PROGRAM

Since the TABLE procedure in the main program, LIB-SER, was written

to allow only the retrieval of the numeric code words from the CODE

array, the auxiliary prograrm, TABLE, was written. The TABLE program

allows the entry of an item, the deletion of an item, and the retrieval

of information contained in an item in the CODE array.

30

The TABLE program first initializes the CODE array by copying

directly into the array the individual records in the CODES file.

The records are truncated after the twentieth character. Once in the

array, the program calls the subroutine HASHX with various parameters

to perform the functions of retrieval, deletion, or storage of an

item in the array. When the required modifications to the array have

been accomplished, the CODE array is copies back into the CODES file

with each Item being padded with blanks on the right to fill out each

record.

Although the TABLE program was written to be operated from the

time-sharing terminal, with slight modifications it could be run under

the batch processor at the computer installation. This might be de-

sirable if the number of modifications is substantial.

C. HASHX SUBROUTINE

The HASHIX subroutine, which is used to compute the address of a

location in a table or array and either return the contents of that

location or place an item in that location, is based on the work done

in scatter storage techniques by W. D. MAURER [14]. The method used

here is referred to as a "division hash code" to distinguish it from

the logical or multiplicative methods most often used in scatter
iI

storage systems [15].

Hash coding techniques can be applied to any table or array in

which the access is ..o be made to the entries in an unpredictable

order and the items are identified by some key or name associated with

their contents. In the hash coding technique, a transformation is

performed on the key to produce an address in the table where the key

31

and the entry associated with that key can be placed. A good trans-

formation is one which will distribute these addresses uniformly

across the available table area.

In most hash coding techniques, the table size is restricted to

being a power of two, since the common method of obtaining the address

is to calculate a k-bit field which is assumed to be a random integer

between zero and 2k-l, and this integer is then used as the address.

In the method proposed by MAURER and used in this subroutine, the

table size is a prime number, and therefore it can be almost any size

desired.

1. Determination of the Hash Code

The hash coding method used here consists of using the first

eight characters of the topic name as the key.' The first four charac-

ters are exclusively OR-ed with the last four characters to obtain one

full computer word (32 bits on the IBM 360/67 computer), and this

computer word is divided, using integer arithmetic, by the table size.

The remainder from this division, which is a number between zero and

one-less-than-the-table-size, is used as the hash code.

This method of calculating the hash code isl comparable in speed

to the multiplicative and logical methods with the advantage that is

almost completely free of the nonrandomness which often occurs in the

other methods.

In using this method of hash coding, a change in the table

size will chant-i all of the hash codes for the table entries. If the

table size has to be changed, all of the hash codes for the entries

must be recomputed. By using a prime number which is twenty-five

percent larger than the maximum number of expected entries for the

32

table, the average number of steps required to find an item in the

table is less than two, i.e., the original hash code address and

one collision modification.

2. Collision Handling

In this method, as in all other hash coding methods, when two

keys have the same hash code, a "collision" is said to have occurred.

When a collision occurs, the item causing the collision must be located

out of place in the table.

There are a number of methods for determining a location for

this item, such as searching linearly forward in the table. Another

approach is to add a random number to the collision hash code to de-

termine a new location. N.ither of these methods is very satisfactory

since they are intrinsin:ally slow if there is any sort of clustering

of the items in the table (many items with the same hash code place

next to each other).

The method of handling collisions used in this subroutine is

the "quadratic search". In this method, a quadratic equation is used

to calculate the new location. The hash code which caused the colli-

sion is used as the constant term in the equation and the other coef-

ficients depend upon the table size. The quadratic search was shown

by MAURER to always search for the item or an empty location by looking

at exactly half of the remaining table locations if the table size is

a prime number. In using this method of handling collisions, the table

is declared full when the quadratic search has searched through half

of the table.

33

III. AN EXAMPLE

To demonstrate the operation of the LIB-SER program, only a repre-

sentative dictionary is utilized. For a total implementation of this

system, the dictionary would have to be greatly expanded. The dictionary

used for this demonstration contains seventy words.

The program is loaded for operation at the time-sharing terminal

by entering LDRM. LDRM is a time-sharing executive file which causes

the program and the system library to be loaded into the computer and

starts the execution of the program. If a non-blank character had

been entered after LDRM, the program would request the operator to

enter optional parameters for use by the program. These parameters are

logical switches which can be used to display traces through the program

or selectively enable/disable the various routines in the program.

After execution has begun, and any optional parameters entered,

the program initializes the dictionary tree structure. The computer

will then ask a user to enter his request, %hlech will then be processed

to obtain the attributes of the individual words. Figure 15 illustrates

a complete run for an individual user.

The difference between the attributes for a word which has been

processed with the DELETE procedure disabled and the same word when it

has been enabled is illustrated below in figure 14.

The computer will then loop back to ask a new user to enter

his request. The program can be stopped by entering STOP$.

(INFORM<NOUNI' -NOUNP VERBP)) (INFORM(VERBP)

(a) (b)

DELTE DISABLED DELETE ENABLED

FIGURE 14. Effects of DELETE Routine

34

ENTER NAME AND SMC NUMBER
c.t. schmidt box 1962

ENTER REQUEST, SURROUND WITH ()$
(what do you have on computers?)$

WHAT
DO
YOU
HAVE
ON
COMPUTERS

** * **** ** *** ** **** *******

C.T. SCHMIDT BOX 1962
* ***** *** ***** ********** **** *

ATTRIBUTES FOUND FOR WHAT
ATTRIBUTES FOUND FOR DO
ATTRIBUTES FOUND FOR YOU
ATTRIBUTES FOUND FOR HAVE
ATTRIBUTES FOUND FOR ON
ATTRIBUTES FOUND FOR COMPUTERS
ATTRIBUTES FOUND FOR ?

(WHAT(INTF. ADVBP> DO<VERBP) YOU(PRNOUNP> HAVE(VERBP PRN3SG>
ON(PREPP> COMPUTERS <OUNP PLUR> ? (PUNTI))

** AT THIS POINT YOUR REQUEST WOULD BE PASSED TO THE

TRANSLATION AND TABLE SEARCH ROUTINES. **

FIGURE 15. Sample Program

35

IV. CONCLUDING REMARKS

This paper has discussed a dictionary list structure which could

be used by an English Language translator to enable natural language

man-machine cctversation directed towards the retrieval of information

from a data bank. The development of the English Language translator

utilizing this dictionary structure and the inclusion of this translator

into the existing information retrieval system used by the Technical

Reports Section at the Naval Postgraduate School Library would provide

the school a flexible and accessible information system for use in

obtaining a bibliography of the reports held by the library.

A translation procedure which is based on a generative model of

syntax and semantics that is comprehensive enough to automatically

resolve some forms of syntactic and semantic ambiguities would be re-

quired for this system. The translator would have to be able to

syntactically parse the user's request, using the attributes determined

from a dictionary structure such as described in this paper, and then

use this parse in conjunction with the semantic environment of the

system to determine the topic areas of interest from the user's request.

In the accomplishment of this goal, it should have some means of com-

munication with the user to resolve any ambiguities which it is not

otherwise able to resolve. Once the topic areas of interest have been

determined, the system can readily produce the numeric code words

required to obtain a bibliography from the existing information

retrieval system.

36

** LIBRARY SFARCH SYSTFM *

** LIA-SER PROGRAM *

LIR SER: PROC(PARUS) O3PT~f'NS(MATN)*:
DCL CODES FILE STRCAM ENVIRONMENT (=00O))q

DICT FILE STREAM FNVIRflNMENT (r-(EO))*:
DCL PARMS CHAR(8~)VAR COflEI1l) CHAF(20)%
OCL (ATOMLISTPNILI TPqrSIZE FIXED PIN,

* DECLARATION nc TH FIELDS OF THE CELLS ON
* THE 'ATOMLIST' LIST.*

I ATOMCELL SASEt)(P),
2 SIZE FIXED SIN,
2 NEXT PTR,
.PNAME CHAP(CSIZE REPER(SIZE)"I,

* DECLARATInWN WIF THc FIELDS OF THE CELLS ON *
* Li, L?, AND L3 LTSTS *

1 CONCELL SASErD(P) ,
2 ATOM? BIT(2)
2 LEVEL FI~c-D AIN,
2 CARP PTR,
2 CDRF PTR;

* DEC*ARATION Or- A FTLE CONTROL ;LICK USED *
* DURING THE READINr. AND WRITING OF THF
* FILES USED).*

DCL I FCPt STATIC,
2 FILENAMP' CHA'RMA INIT('OIC''),
2 FILETYPt CHAP(A) INIT('D-ATA'),
2 CARDNUm FIXED PI!N,
2 STATUS FIXED APIN INIT(O),
2 CARD-BUFF CHAQ(q0):

* PQOCEDUFE WHICH TS US~n Tn INTTIALIZE THIE
* ICTIONARY AMD THP TAPLF ARRAY.*

DCL INIT FKITPY:
IN7T: PPOC:

DCL I rFIXED) PIN:.
ATnMLIST,NIL=NULL:
FLD = 11.
CDMM IQ9PJFI

DISPLAY(ITN~tIALTZING FROM FILE')%
Li = READS:
COMMANP = IITI
CALL IPEFILV-tFCA)
FLO 10P

37

IF TRY THEN CALU PRINTS(CDR (Li))*?
IF TBt THEN Do:!

COMMAND = I'RDAUF I
FILENAME 1=1 'Crfl TRSI7E

CARONUM = i:*
CALL THEFT;LE(FCR)I:
COflEII) =tCAR0 SUFC:--
IFTRY THr-N DIPLAY(IV'E(flir; I) t11

COMMANn = IFITI :CALL THEFILE(j9C8): END:

END INIT:

* PROCEDURE WHICH IS USED TO ENTER ITEMS*
* INTO THE PROGRAM.*

DCL INPUT ENTRY(CHiR(7211):
INPUT: PROCM:

DCL B CHAR(72),(S CHAP(8)91 FIXFD 0'N INIT(OI)STATIC:
IF FLD THEN DOP

I 1.71: 1
CARDNUM = 1: ;1I' CALL IHEFILE(F-C9):
B = CARD RUFF:
IF TRY TREN DISPLAY(f8UFrFEQ 1118): END:

ELSE DISPLAY(''ENTEQ STRINGt SURROUND WITH ()90)
REPLY(B:

END INPUT:

* PROCEDURE WHICH IS USED TO PRINT OUT ITEMS *
* FROM THE PROCrQAM.*

DCL OUTPUT FNTRY(CHAP(*)):
OUTPUT: PROC(C)*:

DCL C CHAR(*),I FIXED BIN INIT(O)STATIC:.
IF FID THEN DO-.

I = 1+1:
CARDNUM = 1:
COMMAND = 'WRRLJP't
CALL IHEFILE(FCB):. END:

ELSE OISPLAY(C);
END OUTPUT:

* PROCEDURE USFO) Tfl DETERMINE THE FUNCTION *
* OF THE CELL SPECIFIED SY TH; POINT=R.*

DCL ATOM ENTRY(PTR) RETUPNS(RIT(2)):
ATOM: PROC (A) BIT(2)

I F A=NYIL THEN RF TUR N('011B):z
RETURN(A->ATOMS).
END ATOM:

* PROCEDURE WHICH CONSTPU:,TS A CHARAC.TCP*
* POINTER CELL (A CELL WITH ETTHE A li C1q 0!
* ATOMB FIELD) 8ND INS=RTS THe POINTCO
* TO THE CHARACTED(S) ON THtE IATOmLIST' LIST *
* IF 6LPEADY ON THE LIST OR ELSE PLACES
* THE CHAR,8CTER(S) ON THF OATnML!S-Tl Lll-T*
* AND INSERTS'THE POTNTER TO THIS NEW CELL.

DCL STRING ENTRY(CHAP(*)VARI RETURNS(PTq):
STRING: PRC2C(C) 0 TQ:

38

0%"L C CHAR(*)VAQ,(0 PTRA I FIXrO 'ATN)ST&TIC:
IF TRC THEN 01 SOLAYC IST ING Ci CI I AT LEVEL# 1ILEV)
o = LOOKU~tCl:
ALLOCATE CONCELL SET(D):
L w LENGTH(C):
IF 1)1 THEN

IF Fit) THFN ATOMI 111R
ELSP ATnOmB = 11B

ELSE ATOMS4 a $01'p:.
LEVEL a L EV:
19 0 =NIL THEN 0O:

CSIZE v L:
ALLOCATE ATO'4CELL SctT(O) :
0->NEXT =ATOMLIST:.
0->PNAME= C:
ATOMLTST = 0: ENfl:

CARP = 0:1
RETUPN(P)*;
END STRING:

* PROCEDURE WHICH SEARCHES THROUGCH THE*
* ATCML!ST' LIST Trl FIND THE CELL LOCATION *
* OF THE INPUT CHARACTEP(S).*

DCL LOOKUIP ENTRY(CHAR(*)VAO) PETUPNS(PTP):
LOOKUP: PRV)C(C) PTR:

DCL C CHAP(*)VAR,Q PTR STATIC:
o ATD'4LIST:

DO WHILE (0-,=Nl L):
IF 0->PNA'ME =C THEN RETURN(O):
0 = Q->NFXT:. END:

RETURN(NILI:
END LOOKUP:r

* PROCEDURc WHICH SCANS THE INPUT 9IjPFF0
* AREA AND Pc'UQNS VALID CHAPACTSP STRINGS
* WITHOUT SLANKS TOl THE CALLING POINT. THE *
* VALID CHARACTER S'PINGS 4RE SING~LE SPFCIAL *
* (EXCEPT 1-1) AN!) ALPANtI'4ERIC STRING~S*
* INCLUDING~ THF 1-' CHARACTER.*

DCL SCAN RETURNS(CHAR(S0)VAR):
SCAN: PROC CHAR(8O)VAD*:

DCL ((RP INIT(72),F3)FTXEDr BIN(tt CMAPi1),
BUFF CHARU72)))STATIC:,

8 0:
DO WHILe!(A0):
IF SP >= 72 THEN)n':

BP = 0: CALL INPUT(SUFF): END:
BR = +I
IF SUSq9rc P1-= I THEN S=BP: ENP:

T=5U S TR (S BUr ,B 8 4
IF T < 'A' 1 T -% '-I THEN RcTUPM (T):

00 WHILF(RP<72 & T -,=' 1 9 (T ='-' I T '>='A')):
BP = BP+l: T=SUSSTP(PUFF,RP,1):. END:

BP=AP-1:
gr-TUN(SUSTP(UFF$.B,0-R+));.
END SCAN:

PROCEDU~r wHIrH CONSTR~UCTS A CCINNECTIVE*I
* CELL (A CEIL WITH A 00 ATOMS FIELD)
* WITH THE INPUT POIN TEPS AND THE*
* CURRENT LEVFL.*

DCL CONS ENTRY(PTR,FTR) PETURNS(PTR):

39

CONS: PROCIAR) PTPI
DCL (A+BU TR:.
ALLOCA F CONCELL SET(P.
ATOMS=OO'081
LEVEL a LEV'.
CAR F=A:

RETURN(P)*:
END CONS:'

* PROCEDURE WHICH RETUPNS THF POINTER*
* CONTAINED IN THE CARF FIFLD OF THP
* SPSCIFIED CELL.

DCL CAR ENTRY(PTP) PETURNS(PTP):
CAR: PROC(A) PTR;

DCL A PTR:*
I F A=NI L THEN RETUR N(NI L):
IF A->ATOMB THEN RETURN(NIL):
RFTURNCA-'5CARF): I
* PPOCEDURV WHICH RETURNS THE PCINTFR*

CONTAINED IN THE CDRF FIELD OF THF
* SPECIFIED3 CELL.

DCL CDR ENTPY(PTRI RFTURNS(PTR):
CDR: PROC(A) PTR:

DCL A P'R:
IF A=NIL THEN RETURN(NIL):
RFTURN(A-XCtP);
END CDR;

* PROCEDURF WHICH RFTURNS THE POINTER*
* CONTAINED IN THE CARP FIELD OlF THE CFLL*
* POIN'TED TO RY THE CAPP FIELD OF THE*
* SPECIFIED CELL.*

DCL CAAR FNTRY(PTR) RETUVRNS(PTP)*.
CAAR: PROC(A) PTR:

DCL A PTR:
IF A = NIL THEN PETURN(NIL):
A = A->CARF:.
RETURN(A->CARF);
END CAAR;

* PROCEDURE WHICH WTLL PRINT OUT ALL IrF THEI *
* INDIVIDUAL CHARACTERS ON THE LIST SPECIV1 cD.

DLPRINT FNTRY(PTR):
PRINT: PRCC(A) RECURSIVE:

DCL A PTR;
IF A-,=NIL THEN

IF A-*ATOMB THSN CALL OUTPUT(SYMAROL(A)):
CALL PRINT(UA->CAPr-)I ;
CALL PRINT((A->CDQF)) ; END:,

END) PRINT;

* PROCE(URI WHICH RFT UQNS THF CHAPACTERS*
* CONTAINED IN THc PNAME FIELD P'F THP
* ATOMCELL SPECIPTEn)

40

DCL SYMPC'L FNTPY(PTR) QTUONS(rHARt0 1O)VAQ):
SYMBOL: PROC(X) CHAR(8CVAQR:

QCL (XY)P TR:
Ir X=NIL THFN RETUPN(INTL'):
Y=X-'>CARr-;
RETURN(Y->PNAME):
END SYMBOL;

* PPOCEDURE WHICH IS USED TO CALL TH *
* PROCEDUPS TO FORM THE LIST STQUCTURc. IT *
* IS ALSO USED Tfl EIZT6BLISH A OCINTEP'TO THE *
* MULTIPLE DEFINITIONS LIST DU TNr, 'HF
* THE INITIALI7ATION OHASP.*

DCL REAMSS ENTRY Rr-TURNS(OTP);
REAVSS: PROC PTR RECURSIVE:

DCL (U0,PIPTR,CK FIXED RIN INIT(O))STATIC,.
ERR = #O'B*. CK = r+*
o = S FXPR('OISI:
IF ERIT THEN CALL OUTDUT(IILL FOR FD EXPPESSION'):.
IF CK = I THEN DO:

PP,Llr = 0:
Pl~iCAAR((i)
D~TITE Or':) IRTETM ON MUL'ITPLE DEFINITION

I I 'LIST 11 P->PNAMEA.: END:
CK =CK.1: END:I

* ERR = 'C'P: CK = CK-1:
RETURN(Q) :

* END READSS*.

PRCDCEDURc WHICH IS USED Tfl CALL-THE LEVFL *
* ZERO PROCEDURE WHICH BUILD)S THr- LIST*

II STRUCTURE AND CONTRCLS THE vURAiON nc
* THE RtIlLtIN,.*

DCL READS ENTRY R=7URNS(PTR):
READS: PROC PTR RECUPSIVF*:

DCL 0 PTR STATIC:
ERR = 119
o = S EXPR(I1'B):
IF FI THEN CALL OUTPUT(IILi. FORMSED EXPRESSION'):

DO WHILE(SCAN-,=' t'): ENfD:
FRO =10S
RETURN(O);
END READS:

* PPOCEDURF WHICH BUILDS THC 'LISP LIKE'
* STRUCTURE O'F THE LISTS USED Sy THE PR(9rRA4,

QCL S EXPR FNTRY(SITtl)) RFT*UQNS(PTR):
SEXP~z: PROC(O T) OTR RECUPSIVE:

DCL nnT RJT(j),(QR)DTR,(T,3yMl)CH R(,q0)VAQ STATIC:
DCL RIGHTSIDe RFTURNS(PTR):.
RIGHTSTOE: PROC PTR;

DCL P PTR:
IF DOT THEN PETURN(Q):
R=S !FXPR(10#R);
IF FPRO THEN PFTIJRN(NTL):
LEV = Q->LEVPL:
P = 0->CA~rF: NRETV
IF TRC THFN OTSPLAY('LEF TrCONCTV SYMAOLI

IIP->0NAMEjtI AT LEVEL'IILMV)
IF R -%= NTL THEN

IF R->LEVEFL =LEV+l THEN 0DO:

41

O->CDRF Ro
P S FXOR(1O'1P): ENfD:

RETURN(CONSrQ,P)I)I
END) PIGHTSIDE:

T-SCA K;*
IF T=I(' THFN DO:

om5 F XPR('O'FR)*
IF RR THEN RETURN(NTIL):
RETURN(lrtHTSTDE)*: END:

IF T = #<I THEN DO:
LEV it1EV +1:
RETURN(READSS) : END:.

IF T -I)' THEN nO:
IF DOT THEN ERR =0119:
ELSE RETUPN(NIL): END:

IF T=I)l THEN DO:
IF DOT THFN FRR =18
ELSE RFTUPN(NTL): END:

IF T = I/# THSN DOi:
SYM =SCAN!
13 =PP%
S NC =1':=CAR(LOOKLIST(L3,SYMM:
ENC =00'Pe:
R =S EXP('O'B):.
RETURFN(CONS(QPfl, END:

ELSE DO;
IF T = 'NIL' THEN 0 = NIL:
L-LSF 0 =STQINrG(T):
RETURN(PIGHTSIDE) * END:

RETURN(NIL):
END S..EXPR:

* PROCEDURE WHICH IS USED TO CONVERT THF ITEmc *
IN THE LIST STRUCTUqE INTO A FORMAT CAPABLF *

* OF REING PRINTED nIUT.

DCL BUILD ENTRY(PTRBIT(I)) RETUqNS CH QR1OOO)VARI:.
BUILD: PROC(P#B) CHAR(1000) VAR RECURSIVE*

DCL P FTP 8 BIT(1P
IF P=NIL IHEN RETURN('NTI):
IF ATOM(P) THEN DO%

IF P -'=NIL. & P->COPF "~=NIL THVN PSTURN(SYMROL(P)
I<* IBUILD0(P-')CDRF:, '1 'S) II$'>):

ELSE RETURN(SYM9OL(P)), S ND:.
IF ATOM(CDRCP)) THEN nO:

IF CDPtP) = NIL THEN
IF B THEN RE T URN RUILDfCARfPl,IoWR))

IF B THEN PETURN(FRILD(CAR(P1,0'BA)f l EIDI
BUILD(CDR(F), '1'B))*:

END BUILD:

* PROCEDURV WHICH IS USED TO CALL THr
* PROCEDURE WHICH IS USFV 0J PR!NT OUT THP
* ITEMS STRUCT1JVED AY THE PUILD PROCEStIRE.

DCL PRINTS ENTRY(PTR):.
PRINTS: PRt)C(A):

DCL A PTRB CHFA(l000lVAR,(LI)5TATTC FIXED) PIN:
DISPLAY('FORMATIU'G LIST FOR PRTNTINl.'):.
IF TRI THEN DISPLAY('DICTIONARY PRINTING TAKES

I I'A LCNr, TI Mc'I
8 = BUILD(A,'0'F):
L = LENGTH(B)%

DO 1=1 TO L BY 60*
CALL OUTPUT(SU; STR(8,ItMIN(6OI-7I))) E1,D:

42

IF FLD THEN CALL OUTPUT(@$#);
END PPINTS:

* PROCFDURC WHICH TS USED To r.FA~rH DOWN A
* SPECIFISD LIST TO FIND THE CHAPACTEP (51
* SPECIFIED RY THE PAPAIVETE?. THE POINTER TO*II THE NEXT TEm 'DOWN' THE LICT !S RETUPMFO). *

DCL LOOKLISI EN'rRY(PTR,CH.AQ(*)VAp) PETURNS(PTR):
LOOKL!ST: PROC(PC) PTR*

DCL (PO R)PT ,C CHAR(*) VAR:
DO WHILF (F-,=NlL):
o = P->CAPF:,
R =CAARUOD))*:
IF P->PNAME =C THEN RSTURN(Q->CDRF):.
ELSE IF -ENC THEN

IF 0->ATOMR = '111 THEN
IF 13 -NIL TAEN Dn":

1 3 = CODNS (0,NI L)

ES 3-LEVEL = 1:. END;
13 - CONS(O,13):
L3-'>LEVEL = 1 : END:

P = P-) CDPc : BP = P: END:
PFTUPN(NIL):
END LOOKLIST:

* PROCEDURE WHICH IS USED TO ATTACH TO ALL
* ITEMS ON THE 'L29 LIST (THE USER OFFINED *
* LIST) ANY ATTRIPUTES OF THAT TTE'4 FOUND ON
* THE ILI' I(DICTIONARYl LIST.*

DCL ATTR8 ENTRY:
ATTRB: PROC:*

DCL (PeQ,RjS;T)PTR ,C CHAR(20)VAP,L FIXED RTN,
R 12: 13 x NIL:

00 WHTLE(R -=NIL):
P =LI:
S =R->CARF:O

C = T-)PNAP4S:
L - T->SIZE*:

DO I = 1 TO L:
Cl = SUBSTR(CI,1):
0 = LVOKLIST(V, 1):
If: 0 = NIL THEN DO:

DISPLAY(IATTPRUTE NOT FOUND FOR ** 'tIC)
('O TO LI: END:

ELSIE P = 01 END:
0 =LOOKLI ST(P 1 *'): z
0 DELETFCO):.
IF 0 = NIL THEN S->CDRF = 13:
ELSE DO:

IF L3 "= NIL THEN DO:
S->CDRF = 13:

D0 WH~t(L3-CDF-=NTL):,
13 a L3-),CDRF: FNO:

L3-)>CDO Q: END:
ELSE Q-t~ : ENr):

01SLY ATC Ur- F OUND -00 'tC)
LBi: 0 = ->CDRF: -L3 = NIL: ENO:

END ATTPB8:

* POOCEI-uPF WHICH !S 1.'SCO TO DeLETE CROMA THE *
* LIST Or- ATTRIRUTES TqOSF ATTOIRIJTFS WHICH *
* WERE PICKED UP DURING THE SE .PCH WHICH 00 *

43

* NOT APPLY TO THE VFCIFC ITEP'.*

DCL DELE-TE SNIRY(PTR) RFTURNS(PTP):.
DELETE: PROC(O)PTR:

DCL (PiQtR ,STBO)PTP ,C CHAR(72O)VAQ:
BO = 0:

DO WHILE(Q -=NIL):
S =CAARU(01l:
IF SUBSTR(S->PNAMcE,1,1) =-'THEN D0:

BQ 0 ->CDprF:
C =SU13STR (S-PNAMEt2):
P,R ;L3:

DO WHI Lf (P -,= NIL):
T w CAAQRUR)):
1F 7->PNAME = C THEN DO:

T - P->dDRP:
Tr P = R THEN L3 T%

ELSE P-)CDRF = T
Go Tl LS2: END:

FLSO A = R->CDRF: ENO:
L82: 0 00: END*.

ELSE RETURN(9O): END:.
RETURN(BO);
END DELETE:

* PROCEDURE COP THE ON LINE ENTRY OF ITC:MS
* INTO THE DICTIONARY LIST STPUrTU~.

CCL DEFINE FNIRY:
DEFINE: PROC RECURSIVE:

DCL Cl CHAR(1):.
DISPLAYVIENTER W'nRD FOR DICTIONAPY CNTRYI)

REPL'v(IOT):.
L = LENGTH(!PT)*,
RPL2 = Li:

DO I - 1 TO L:
Cl SUBSTR(IvT I J)'
13 - LOOKLI ST(Ll611f1
IF I =1I THEN PP = 13:
IF L3 - NIL THEN DO:

IF SP = 12 TH15N IPT = SURSTR(IPTr,1,I)*:
ELSE IPT - SUqSTR(IPT 19I-'P
DISPLAY(ILETTERS ALRE DY IN DICTIONaPv 'flIRT):

CALL PRINTS(PP)*
D1SP ATE 'ENTER REMAINDEP Of WOQ0 ANDI

I P-)D ATTRIPU'ES IN DICTIONARY FnORMt):
S- RF =READS: END:

EL SE RPL2 = 3: END:
CALL PPINTS(PP) *
DISPLAY(DICTIDNARY COMPLETE =0, ELSE 14)

REPLY(IPT):.
FLO, = IPT: IPT
IF FLO THFN CALL DEFINE:
END DEFINE:

* PROCFDURF WHICH YS USED TO CALL THE HASHX *
* SUSROUTIh!! TO RETRIEVE THF NUMERIC C~orE
* WORDS AS~nCIATFo WITH THe TOPIC NAME.*

TABLE: PRfC(C):
DCL C CHAR(20)v TBLCODE FIXED) SIN INTCO):
CALL HASHX(CCnD)E,5,1,iTBLCODE):
IF TBLCODE = 0 THEN DISPLAY(' 70PIC NAME AND I

I I'INUMER IC C ODE WoRfl ** 9 1r) : I
ELSE DISPLAY(' **TOPIC NOT IN TABLE 1 'tC)%
END TABLE:

44

NoT REPROD UCISL

* DECLARATTON flF THP (nLflAL VA TARLSS USED *
* AND DI SPLAY Cc COMMAND REQUESTS To THF
* OPFRATOR.*

DCL fLl9L2,L3,RP,PP) PTQ,STNA4E CHAP(&0),IPT CHAR(SO)VAQ,
(TRC,ENC,TR7,JRP,rLD,TRL,DCli~RIT(l)I
(I L:LEV,TRLST7E)FIXF!D PIN:

TPCT I ENCIERR,c:L0,TBLpDCT=sII9: LEV=O:. TOLcIZE=11:

IF PARMS -,= 11 THEN nISPLAY('ENTER OPTIONAL PARAMETERS')
REPLYC JPT):

IF IPT _j 1 THEN GET STRTNG(IPT) DATA(TRC,TPI,FLV,
TBL OCT):. iOT

CALL INIT;

** RDUT!NE FOR THE ODCPATION OF: THE PPRerRAM. *

DO WHILE(I1'R):
DISPLAW(1):
D1SPLAY(IENTER NAME AND SMC NUMBER') REPLY(STNAME):.
DISPLAY(' 1):
IF TRI THEN OTSPLAY('FNTER OPTIONAL PARAMETERS,'1 11

'IF NONE THEN RETURN') REDLY(IPT):
IF IPT -~ 'THEN GET STPING(I PT) DATA'"RCENC,

TRI,FLV,T8L,DCT): IPTr =It
IF OCT 'THEN CALL DEFI NE:
ELSE DO:

L2=P EADS:
CALL PRINT(L2):
IF ATOM(L2) THEN IF SYMOL(L2)=tSTDPf THEN EXIT:
DISPL.AY(' I):
DISPLAY('
DISPLAY(' #IISTNAmF):
01ISPLAY (' ******1:********)

CALL ATTRP:

CALL PRINTS(L21; END:
IF TBL THFN CALL TABLE(' ** TOPIC NAMS 1*):
DISPLPY(' 1):
D!SPLAY('** AT THIS POINT YOUR REQUEST WOULD'I

I BE PASSED T11 THE I) *
DISPLAV(TRkNSLATION AND TABLE SPAPCH III

'ROUTINES.*':
DISPIAY('): END:

END LIB_ SEP:

45

** TABLE PROGRAM4*

TABLE: PROC(PARI4S) OPTTONS(mAINfl
DCL CODES FILE STREAM ENVTPONMFN? (F(8O))*
DCL (TRC SWT)FtIT(1),(CflDE(11),ALFA)CHAP(2O) DBN

(I DATASIZE NRXFY TRLSI7E,TY'OPTBLCODE-4x- BIN,
PARMSou IPT) HAR(I VAR:

* DECLARATION DF A FILE CONTROL BLPCK FflR *
* USE IN TH- READIN O)F THE EXTERNAL FILF.

DCL 1 FCO STATI
2 COMMAND CHA(8
2 FILENAME CHARM8 INIT(OCODES11,
2 FILETYPIE CHARMS INIT(DATA'),
2 CARONUM FIXED PIN,
2 STA T US FIXEn SIN
2 CARDBUFFER CHARItO);

* PROGRAM f)PFRATION*

IF PAR'4S -*'THEN TRC =11S
ELSE TRC =018
TB3LSIZE 11 78 TLCODE = 0%
DATASIZE = 5; NPKEY = 1;

* ROUTINF TO READ THE CODES FILE INTO THE*

* ARRAY FM~ USE DURING THE PROGRAM.*[

DTSPLAY(IINITIALIZATION C' THE CODE ARRAY'):
COMMAND = 'ROBUFf;

DO 1 = 1 TO TBLSIZE:.
CARONUM = I:
CALL IHEFILE(FCB):
CODE(I = CARD BUFFER:
IF TRC THFN DISPLAY(ICnDE(1'HIII') 1IICODE(I)) END:

COMMAND = 'FINI'
CALL IHEFILE(FCB):
OISPLAY(COMPLETION OF INITIALIZAT!ON')l

* ROUINE WHICH ALLO1WS THt, CONTINUAL STOPF,
* DELETION, OR RETRIEVAL OF ITEMS FROM THE *
* ARRAY 'UNTIL T14F OPERATnQ IS FIMTSHED.

SW,. =1'B*
DO WHILS(SWT):
DISPLAY(ENTER TYPE OF OPERATION: STORE=ORETRIEVE-lI

tI',DELETE=-l') PPPLY(IPT):
TYPOP = IPT:
DISPLAY('ENTSR ITEM REQUIREtD') PEPLY(ALFA): I
IF TRC THEN DISPLAY('CALL HASHX'):

* THE FOILLOWIN(G ARE THE PARAMETERS REQUIRED:

46

ALFA cITFM IJNDEq CONSIDFRATION *

* COOE = THE- TAPLF ARRAY ADEA
* DATAS17E = N:ImRER riF COMPUTER WOROS IN*
* THE ITEM PEINq, rtONSTOEREn*
* NRKcY = NUMBEP OF ITEMS, NORMALLY ONE*
* TYPOP = TYPE 01: OPER&TI ON
* TBLS17E = THF TABLr- ST71F (PRIME NiJmRp)*
* TRICODE = THE TABLE CONF~rUPATTON COt)E (0) *

CALL HA SHX(ALPACODE ,4TASI ZENPKr-Y,TYPOD,TRLST ZE,

* THE rFPLLflwINr 8RC TH= TARLS CODES WHICH
* RESULT FROM THE CALL TO HASHX:*
* 0 = OPERATIO-N SUCCESFULLY COMDLETED *
* 1 = TARLE IS FULL*
* 2 =ITFM IS NOT IN THE TARLE*

DISPLAY('TABLe. CODE 'lIT;3LCflnE):
IF TYPOP = 1 THEN DISPLAY('RETRIEVC0 ITEM ANO CODE:

I IALFA):.
DISPLAY(IF FINISHED ENTER 0, ELSE 1') REPLY(IVT):.
SWT = IPT: END%

* ROUTINE .SP f WRITE THE APPAY BACK INTO *
* THE CODES FILF.*

COMMAND = 'ERASFI:
CALL IHEFILE(FCR):
COMMAND = 'WRBUF';

DO I = 1 To TBLS17E:
CARDNUM =I:'
19 TRC THEN DISPLAY('CODEI('IIIl') 'IICOOE(Ifl:
CARDPUJFFR = Cl)~)
CALL IH7FILE(FCB): LN!n:

END TABLE;

47

Nor R(PRoDIIE

* ** HA~SHX SURrU'rINc **

MACRO

CNI HAKEY
* MAZRO USED TO CCNSTRUCT THE HI.H COnD DI IPLPCr-MENT
&N1 LM 4,5,TFMP+24 LOAD 'HE COLLITSON CONSTANTS

LM 6,7,0(11) ESTtBLISH HA H CODE INnFXXp 69t7 RE.DUCE THE KEY Tr ..INE W,3RrO

SRDA 6,32
D 6,TEMP+12 HASH CODE INDEXLR, 7,6
MR 6,2 HASH TABLE DISPLACEMENT
C 79=,:10t
RNL *+6
LCR 7.7 LOAD COMPLFMEN r IF I'ErATIV:
LR 1=' ' -

AP 12,15 FSTARLISH HASP TPLE F NTRY PO.INT
M END

MACROCN2 KEYCK &8P1
* MACRO USED TO COMPARE 'HE INPUT WTTH THE STORED 'ITeM
CN2 LM 8,10,0(11) LOAD THE "IRST THR L WORDS OF DATA

CL 8,0(12) CHECK THE CIRST W0Rr COO MATCH
RNE FRPI BRA'CH IF NOT SAME
CL 9A4(12) CHECK THE SECOND WnPD
BNE &BPi BRANCH IF NOT 5AMF
CL 10 P(12) COMPARE TH THIRD WnRD COR MATCH
BNE tB1 BRANCH IF NOT SAME
MEND

CN3 HCCLL F.RP2, PP3
* MACRO USED TO COMOUT=. THE COLLISION i!"LACEMENT
N3 AR 4,2 ADD DATA SIZE "TO LOWf: COLL rONST

CR 4,5 CHECK TO SEE IF WITHIN TA LF ARFa
BNL 803 IF NOT GO TO TABLE FULL ROU'INE
BXLE 7,4,*+6
SR 7 5
LR 1,7
AR 12,15 RFCOMPUTE NEW HASH TABLE ENTRY
B ERP2
MEND

MACRO
&N4 MVCHA fR1,C&02,cRP
* MACRO USED TO MOVE THE DATA FROM INPUT T. HAqH TABLE
* OR FROM HASH TAFUCE TO OUTPUT
&N4 AR 2,1 REDUCE NUMBER OF CHAO RY ONE

EX 2,*+8 MODIFY THE NUMRFR 0C CHAO MOVED
B *+10
MVC 0(1,ERI.),OfJR2.)
SR 2 1 PESTO O . THE NUMBER OF CHAOACTERSAR 111,2
BCT 3,,BP CHECK TO SrF IC ALL DATA PPOCFSSED
B EXIT IF FINISHED BPANCH TO EXIT ROUTINE
MEND

MACRO
FN5 TPLFUL ENR
EN5 L 1,TEMP+16

L 2,=F'CN;.I
ST 2,0(1)

48

NO?
R FXIT No REPRODUCIj

MEND

* AFTER INITIALT7ATION THE cOLLOWTNG ARE 'HE
, .REGISTED ASS'GNMFN T S.

* R-0 CONTAINS A CONSTANT ILANK FOR COMPARISON.
* R-1 CONTAINS A CONSTANT MINUS OKI=
* R-2 COnNTAINS THE DATA LENfTH IN RYTFS
* R-3 CONTAINS THF NUMREQ OF !TFMS TO BF PRnCESrED
* Q-4 CnNTAINS A CnLLISIfN CONSTANT ((oU-1)/2*'2)
* R-5 CONTAINS A C ILLISION CONSTANT (PO*R2)
* R-11 CONTAINS THE CURRFNT flAA AnnRFS.
* R-12 CONTAINS THE HA'H CODE r)ISPLbCEMr'NT
* R-13 CONTAINS THc PROrRA'A BASE ADr)QcSS
* P-14 CONTAINS THE DATA RASE AODPFSS
* Q-15 CONTAINS THP HASH TARLE PACE ADDOESS
* R-6 TO R-10 ARE WORKING REGI.STUPRS
HASHX CSECT

USINr, * 15
8 11(0,1.) BRANCH AROUND IDENTIFIER
DC ALI(6)
DC CL6'HASHX' IrDENT!F FR
STM 14,12,12(13) SAVE REGISTURES
LP 12113CNOP 0t
RAL 1 i,*+76

OROP 15
USING *,13
DS 18F
ST 13,8(12)ST 12,4'(131

BEGIN PROGRAM

LM 14,15,0(1) LOAD KEY ADDRESS AND HASH TABLE BASE
LM 2,6 ,8() LOAD PARAM.TEPS
L 2,0(2) LOAD KEY AN DATA SI7
L 3,0(3) LOAD NUMBEq OF KEYS OR nATA
L 4,0(4) LOAD TYPE Loc nP(RET=1,ST=O,DEL=-1)
L 5,0(5) LOAD TABLE SIZE (PRIME NUMBER)
CNOP 0,4
9 ' .36

TEMP DS 9F STORAGE SPACE =OR PARAMETERSSTM 2t,tTEMP
CLA V,2 KEY/MATA SIZE TIMFS POJUQ

ST 2,TEMP+20 TEMP STORE nC DATA SI' IN BYTES
IR 7,! ESTABLISH COLLISION CONSTANTS TO 0
RCTR 5,0DSRA 5,0 SUBTRArT ONE FROM TABLE SIZE

MR 4,2 MULTIPLY TABLP SIF BY flATA SIZF
SLA 7,2 MULTIPLY TABLE Sci.E BY COUR
MR 6,2 MULTIPLY 4-TaBLE SITC BY DATA SIZE
ST 5,TMP+24 A-- TEMP STORE CF CONSTANTS
ST 7,TEMP+28
LR 11,14
L 1,=F'-1' ESTABLISH CONSTANT MINUS ONIF
L 0,=C' ' ESTABLISH CONSTANT BLANK
L 6,='0' ESTARLTSH ZERO CONSTANT
C 6 TEMP+S CHErK TO F IC STOR , ODERATION
BE L6 P1 BRANCH TO STOR._E ROUTINE
C 1,TFMP+8 CHFCK TO SEE IC DELET OOERATTON
BE PELT BRANCH TO DELCTION ROjjTINC
B RTRV BRANCH TO RETPIEVr ROUTINc

* STORAGE ROUTINE

LnPl HAKEY
LO12 C 0,0(12) CHECK OR EMPTY S1.tT

BE *+16 IF CMPTY BRANCH TO CHARACTER MOVE
c 1,0(12) CHECK TO SEF IZ ITEM .nELETED

49

FtE *+a TF DELETED RP&NCH TO M11VE R01TINE
B FSLT BRANCH TO FULL SLOT ROJUTYNr-
MVC HA 12W11LflPI

FSIT KEYCK CLS2
MVCHA 12011 LOPI

CLS2 HCOLL LOP2,9L1
* RETRIEVE ROUTINIE

RTRV HAKEY
10P3 KEYCK CISI

MVCHA 11912 RTRV
CLSI HCPLL LOP3fF:L2

* DELETION ROUTINE
DETHAKFY
LO4KEYCK CLS3

ST 110(12)
ST 1,4(12)
BCT 360ELT

CLS3 HCOLL L6P4,TFL2

* TABLE FULL ROUTINF

TFL1 TBtLFUL 1
TFL2 TBLFUL 2

* RETURN ROUTINE

EXIT L 1394(13)
Lm 14 12 12(13) RESTORE REGTSTUPES
MVI 12113,X'FF' SET PFTURN INnICATInN

* LA 15,0(0,0) ICAD RETURN CODE
BP 14 RFTUPN
END

50

** DICTIONARY FILE

(1<MSPLR<S<*<PLUP>>> M=SPLR<E<S<*<PLJP')y> MLY<L<Y<*(-4f)JCO
ADVEBP)Y>> MION<I<O<N<*<-VFPAP NOUKP >)W mimr.<i(N<rx*<pRspT

AL<A<L<*<-NlUNP ADJP))> MED<F(0<*<DAST>>') MEST<F<S
<T(*<SUPPL >)) MER<E<Q<*<C~mPR>* '> mTC<I<r<*<-NIlNP ADO>,
>)-MENT<M<E<N(T<*<-VFRAP NOUNP>>>> MVLE<A<<L(E<*(-VEQPP I
ADJP>'> MICS<I<C<*<-NO(JNP AtDJP> S<*>>)> M0<D<*<0AST >>

E <L<'E<C<T<R<NOUNr) fl<N</MICS> D<lF<* > L<Y<S<I<S*W) > T

T <0<*<PRFPP AQV3P>'>> H<F<*<ADJP rEcART5Y> A<T<*<PPNLOUNP
ADJP>>> E<L<r-<M<F<T<P<Y<*<Nn(JNP>>X,>)Y>>>

A <*<ADJP TNr)APt) N<*<aDJP INnAQT' * L<L<*<A0JP>>) C(O<U~q
<NOUKIP T</MICS>Y>) Q<U<T<%)<VFPB: E<* /MD> /ING>*>>> 93<
O<U<T<*<PRcP0' ,> M<*<V~pFkD>

O<B<T<A<I<N(VEPB' * /MIN>>>>, PRS-PP N(*> F<*'> t<T(*(
-PREPP ADVRP)>>

T <*<PRNOIJN) N<*<R 0'> P<NOU1NP fl(* R<fJ<*<-MnUhNv.VFRSVD A
<T</MIOfN)))) > T<E<R<S<S<T<VER9P * S<*> /MtED)>> S(*

N <A<T<U<P<F<*<NOUtNP>> /MAL>>>*>>
s <O<M<F<*<bDVPO)>) E<N.<<VEQRP * /MIN6G*Y*>
R <E<F<E<R<VE-P;P * F</MING /MED>> > %)<fl<1QT<NfltiNP*

/M SDP)))))
H <A<VERSP S<*<PRSG'>) D<*<PAST)>> V<S<*<PPN3SG>> fMTNrj >

(<L<D<I<N<G<NOUNP * /mS4PLQ >))>
L. <A<N<G<U<A<r(<F<Nr-1NP * /MSPLP>>> !<K<*<VPPPW

0 <O<VEQPPP * /M!Nr,> S<S<T<R<O<Y<F<R<NOT1JhP / MSPLR*>>)>

C <A<L(C <UCI <U< <*<NIOINP>)>y>> 0<U<V~t<F<<NlNlP*
/mSPLR)>)> M<P<U<T<e<R<N0UNP*ISPP)

F <I<N<D<VERAP * /MING>Y)
M <F<*<PRNVIJNP>>
W <A<N<T<*<VEPF3P>>Y> O<U<L<0<*<VFR8P)>)) '<T<H<*<PREPP>

Y <O<U<PPNiMJN 0 * R<*<P0SSP))))Y>
C, <I<V<VEQBP E<*> IMINC(>5 A<V<E<VF0P0 PAST>')>
P <L<<A<SE<*<V9:PQP>)>>>
9 <I<B<L<T <1<G<R<A<P<H<NOUNP Y<*> I<C<I?4L>>)>>))

V K X J 0 Z
* <*<PUNTP>)
9 <*<PUNTC>

51

LIST OF REFERENCES

1. University of Pennsylvania, REAL ENGLISH: A Translator to Enable
Natural Language Man-Machine Conversation, by. H. Cautin, May
1969.

2. H. Cautin, M. Rubinoff, S. Bergman, and F. Rapp, "EASY ENGLISH,
A Language for Information Retrieval Through a Remote Typewriter

" Console," Communications of the ACM, v. 11, pp. 693-696
October 1968.

3. J. A. Craing, S. C. Berzner, H. C. Caryney, and C. R. Longyer,
"DEACON: Direct English Access and Control," Proceedings - Fall
Joint Computer Conference, pp. 365-380, 1966.

4. C. H. Kellogg, 26 May 1967, CONVERSE - A System for thei On-Line
Description and Retrieval of Structured Data Using a Natural
Language, System Development Corporation Report SP-26054

5. C. H. Kellogg, "On-Line Translation of Natural Language Questions
Into Artificial Language Queries," Information Storage and Re-
trieval, v. 4, pp. 287-307, 1968.

6. C. H. Kellogg, "A Natural Language Compiler for On-Line Data Manage-
ment," Proceedings - Fall Joint Computer Conference, pp. 473-492,
1968.

7. International Business Machines Corporation Form C28-6571-4, IBM
System/360 Operating System PL/I Language Specifications, 1965.

8. International Business Machines Corporation Form C28-6596-3, IBM
System/360 Operating System PL/I (F) Programmers Guide, 1967.

9. International Business Machines Corporation Form C28-8201-1, IBM
System/360 PL/I Reference Manual, 1968.

10. International Business Machines Corporation Form A22-6821-7, IBM
System/360 Principles of Operation, 1968.

11. International Business Machines Corporation Form C28-6514-5, IBM
System/360 Operating System Assembler Language, 1967.

12. C. Weissman, LISP 1.5 Primer, Dickenson Publishing Company, 1968.

13. N. Abramson, Information Theory and Coding, McGraw-Hill Book
Company, 1963.

14. W. D, Maurer, "An Improved Hash Code for Scatter Storage," Communi-
,-cations of the ACM, v. 11, pp. 35-38, January 1968.

15. R. Morris, "Scatter Storage Techniques," Communications of the
ACM, v. 11, pp. 38-44, January 1968.

52

DOCuMENT CONTROL DATA . R & D

ISerwitry flatseltrallaft of filli. *. 'd, of oh-triac and indoulng annotation n,..f be entered when the overall report I.o clasilfied)
IONIGINA TING AIC TIVII~ f ('Cpotot *wfi"r) JA.*REP ORT SE[CUR/ITY CLASIFICATiO14

Unclassified

Naval Postgraduate School 26, GRouP
Monterey, California 93940

J REPORT TITLE

A Dictionary Structure for Use with an English Language Preprocessor to a
Computerized Information Retrieval System

A OESC*IPTIVC NOTS (Trpe of repoI ond Incluiv. dalea)1

Master's Thesis; June 1970
S. AU T"ORN$I (Firrt "n*. middle initial. lst name)

Lieutenant Commander Charles Thomas Schmidt

,. REPORT OATE ?a. TOTAL NO. OF PAGES 5. NO.'OF ,tES

June 1970 52 15
So. CONTRACT OR GRtNT NO. be. ORIGINATOR'I RIEPORT NUMSNKEIS)I

C. PROJECT NO.

a. Sb. OT R ;*REPORT NOISI (Any other numbers &hot may be aalponed
tle Y, port)

10. DIST1RIrUT ION STAT EMENT

This document has been approved for public release and sale; its distribution
is unlimited.

It. SUPPLEMENT ARY NOTES 12. SPONSOCMNG MILITARY ACTIVITY

Naval Postgraduate School
Monterey, California 93940

IS. ABSTRACT

This paper describes the formation of a dictionary list structure which can be

used by an English language translator to enable natural language man-machine

conversation directed towards the retrieval of information from a data bank. The

hierarchical structure of the letters in a word and the placement of word attributes

in this structure is discussed.

A computer program, vhich accepts as input an English language sentence and

processes this sentence in conjunction with the dictionary list structure to obtain

the attributes of the individual words, is described. The incorporation of this

dictionary structure into a complete natural longuage information retrieval system

is also discussed.

FORM°D.17 (PAGE 1)
DD. NO 517 3

S/N 0101-8e07-6811I Security Classification 310

Security Classification

LINK A LINK a LINK C
KE 011l OLE WT MOLE WT RO0LE WT-

Information Retrieval

Natural Language

Dictionary Structure

List Structure

D D ,PORM 1473 (BACK) _ _ _ _ _ _ _ _ _ _

SI o~to.s2I56 Secutity Classfication A-31409

